DOI: 10.11766/trxb202012070566

陈雅兰,孙可,韩兰芳,高博. 土壤中微塑料的分离及检测方法研究进展[J]. 土壤学报,2022,59(2):364-380. CHEN Yalan, SUN Ke, HAN Lanfang, GAO Bo. Separation, Identification, and Quantification Methods in Soil Microplastics Analysis: A Review[J]. Acta Pedologica Sinica, 2022, 59(2): 364-380.

土壤中微塑料的分离及检测方法研究进展*

陈雅兰1,孙 可1节,韩兰芳2,高 博3

(1. 北京师范大学环境学院水环境模拟国家重点实验室,北京 100875; 2. 广东工业大学环境生态工程研究院,广州 510006; 3. 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京 100038)

摘 要: 微塑料一般是指粒径小于 5 mm 的塑料颗粒,具有稳定性高、粒径小及迁移性强等特性,能长期存在于土壤环境中, 并且充当各种污染物迁移的载体,甚至通过植物富集等方式经食物链逐级传递,对环境和人体健康造成严重危害。然而,由 于土壤基质的复杂性和分析技术的限制,关于土壤微塑料的研究尚存很多空白。开展土壤微塑料分析技术的研究是探索微塑 料在土壤中的迁移转化规律和评估微塑料生态风险的基础。本文综述了国内外环境样品中微塑料的分离提取和识别定量技术 的研究进展,探讨了各方法的优缺点及其对土壤样品的适用性,并对未来分析技术的发展方向提出展望。文章认为,密度分 离法作为最常用的分离方法,操作简单且分离效果良好,但存在无法有效去除有机物和分离小塑料颗粒(<50 μm)的问题; 新兴的加压流体萃取技术会对微塑料结构造成一定破坏,但由于其自动化程度高、成本低、效率高,仍具有良好的应用前景; 其他替代方法(如油提法、磁性分离法等)的应用相对有限,其对土壤样品的适用性还有待研究。不同强度的消解方法均会 对微塑料结构造成不同程度的破坏,且增强有机质消解效率往往以牺牲微塑料回收率为代价。现阶段的识别定量方法主要包 括借助显微镜的目视鉴定方法、以红外光谱和拉曼光谱及其衍生技术为主的光谱分析方法以及与质谱或色谱等联用的热分 析方法,这些方法在应用于土壤微塑料识别时存在耗时长、微塑料尺寸和样品量大小受限或破坏微塑料结构等诸多问题, 将不同的方法进行组合有望解决这些不足。此外,由于研究者采用的分离检测方法的差异性,研究结果难以横向比较。 考虑到现有分离检测方法的局限性,今后的研究重点应在于:(1)建立一套适合土壤中微塑料分离提取和识别定量的标 准方法;(2)探索适合小颗粒微塑料的分析手段;(3)开发不损害微塑料结构的高效分离/识别/定量方法。 关键词:土壤;微塑料;分离;识别;定量 中图分类号: X830.2 文献标志码: A

Separation, Identification, and Quantification Methods in Soil Microplastics Analysis: A Review

CHEN Yalan¹, SUN Ke^{1†}, HAN Lanfang², GAO Bo³

(1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;

^{*} 国家自然科学基金面上项目(41977299)和流域水循环模拟与调控国家重点实验室自主研究课题(SKL2020ZY02)资助 Supported by the National Natural Science Foundation of China (No. 41977299) and the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (No. SKL2020ZY02)

[†] 通讯作者 Corresponding author, E-mail: sunke@bnu.edu.cn

作者简介:陈雅兰(1997一),女,四川成都人,博士研究生,从事生物炭及微塑料环境地球化学过程研究。E-mail:chenyalan_bnu@mail.bnu. edu.cn

收稿日期: 2020-12-07; 收到修改稿日期: 2021-03-22; 网络首发日期(www.cnki.net): 2021-03-30

2. Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; 3. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract: Microplastics (MPs) refer to plastic debris with a dimension <5 mm and possess high chemical stability, small particle size, and strong mobility. Once they enter the soil environment, MPs can exhibit long-term retention, act as a vector for soil contaminants, and even pass through the food chain by plant enrichment, causing serious damage to the environment and human health. Due to the complexity of soil substrates and the limitations of analytical techniques, there is still a big gap in the study of soil MPs. Research on soil MPs analysis technology is the basis for uncovering the migration and transformation mechanism in soils and to evaluate the ecological risks of MPs. In this study, worldwide research progress on the separation, extraction, and identification of MPs in environmental samples is reviewed. Moreover, the advantages and disadvantages of these methods and their applicability to soil samples are discussed. Finally, the development direction of future research on the analysis technology is suggested. The most common separation method, density separation, is simple and effective for extracting MPs, but it cannot remove organic matter or separate plastic debris < 50 µm. Though it may damage MPs structures, the newly developed pressure fluid extraction (PFE) still has good application prospects because of its low cost, high automation and efficiency. Other alternative methods (e.g., oil extraction and magnetic separation) are rarely used, and their applicability to soil samples remains unclear. Also, digestion methods with different intensity are reported to cause different degrees of damage to the MPs structures, and the enhancement of organic matter digestion efficiency is usually at the cost of MPs recovery. The existing identification and quantification methods include (i) visual identification methods with the aid of a microscope, (ii) FTIR and Raman based spectral analysis methods, and (iii) the MS or chromatography coupled thermal analysis methods. When applied to soil MPs identification, these methods exhibited shortcomings such as time consumption, size and amount limitations of MPs sample, and damage to MPs structures. The combination of different technologies is expected to address these shortcomings. Importantly, due to the selection biases of researchers on available separation and analysis methods, the results of different studies were difficult to be compared horizontally. Considering the existing deficiencies in current analytical methods, the future research focus should be (1) to establish standard methods for soil MPs extraction, identification, and quantification; (2) to explore suitable analytical methods for small MPs (<50 µm); (3) to develop separation/identification/quantification methods that do not damage MPs structures and are less time-consuming.

Key words: Soil; Microplastics; Separation; Identification; Quantification

塑料是一种化学稳定性高、可塑性强的高分子 合成材料,广泛应用于包装、建筑、纺织、制药、 农业生产和电子制造行业^[1]。据统计,全球塑料年 产量约为3.59亿t^[2],其中绝大多数为一次性使用。 塑料的高消耗伴随着大量塑料废物的产生,但只有 一小部分(6%~26%)会被回收利用^[3]。塑料废物 的不适当倾倒或管理不当导致其在陆地和海洋生态 系统中的积累^[4],并且因太阳辐射、机械力和微生 物等作用破碎/分解成更小的碎片,造成了严重的环 境污染和风险。

近年来,微塑料(microplastics, MPs)在不同 的环境介质中均被检测到^[5-6]。微塑料一般是指粒径 小于 5 mm 的塑料颗粒,其尺寸下限还没有明确的 定义,广义的微塑料还包括纳米塑料(<1 μm)。与 大碎片相比,微塑料由于其丰度高、粒径小且能够 长距离运输而更具危害性^[1]。一方面,微塑料可以 充当各种污染物在环境介质中迁移的载体;另一方 面,微塑料本身也含有添加剂等成分^[7],其泄露会 对环境造成污染。微塑料可以被生物摄食并沿食物 链(网)传递到更高的营养级,可能会通过环境暴 露和摄食对人体造成危害^[8]。

目前,关于微塑料的研究主要集中在水生环境 中,因为微塑料对水体和水生生物的危害是最直接 和显而易见的,并且水体中微塑料的采样和监测相 对简单。土壤介质的复杂性及分析方法的限制使得 土壤微塑料污染一直被忽视^[6.9],只有很少的研究报 道了土壤环境中微塑料的存在^[10]。近年来的一些研 究表明,土壤可能是较水体和沉积物更大的微塑料 的汇^[11-12]。各种人类活动(农用地膜覆盖、灌溉、 污水污泥和农业堆肥等)和气候现象(大气沉降、 降水和洪水等)均对土壤中微塑料大量积累有着不 可或缺的贡献^[13-14],并且土壤中微塑料浓度在今后 的一段时间还可能会持续增加^[15-16]。一旦进入土壤, 微塑料可能会经历不同的环境过程并引起各种生态 风险^[6]。然而,缺乏合适、系统的土壤微塑料分析 方法使得各研究的侧重点和研究深度有所差异,难 以横向比较和有效评估土壤微塑料的环境风险。

因此,本文总结并讨论了可用于土壤微塑料的 分析方法的潜力和局限性,并提出当前分析技术的 关键挑战和对未来研究的展望,以期为土壤微塑料 分析技术的进一步发展提供支撑。本文涉及的微塑 料的中英文名称、缩写及密度信息参见表1。

中文名 Chinese name	英文名 English name	缩写 Acronym	密度 Density/ (g·cm ⁻³)
聚丙烯	Polypropylene	РР	0.88~0.91
聚苯乙烯	Polystyrene	PS	1.04~1.05
聚乙烯	Polyethylene	PE	0.92~0.97
低密度聚乙烯	Low-density polyethylene	LDPE	0.92~0.94
高密度聚乙烯	High-density polyethylene	HDPE	0.94~0.97
聚氯乙烯	Polyvinyl chloride	PVC	1.45~1.70
聚对苯二甲酸乙二醇酯	Polyethylene terephthalate	PET	1.40~1.60
聚酰胺/尼龙	Polyamide/Nylon	PA	1.05~1.10
聚碳酸酯	Polycarbonate	PC	1.18~1.22
聚氨酯	Polyurethane	PUR	1.20~1.40
丙烯腈丁二烯苯乙烯	Acrylonitrile butadiene styrene	ABS	1.01~1.08
聚甲基丙烯酸甲酯	Polymethyl methacrylate	PMMA	1.16~1.21
醋酸纤维素	Cellulose acetate	CA	1.30~1.35

表1 常见微塑料的中英文名称、缩写及密度信息

Table 1 Chines	se, English,	and acronyn	names of common	microplastics	and their den	isity inform	ation

1 土壤微塑料的分离方法

土壤是一种十分复杂的环境介质,包含有机物、 黏土、矿物质和土壤生物等。土壤中的各种基质与 微塑料存在不同程度的结合。土壤基质与微塑料分 离的有效性是后续识别和定量分析的基础。

1.1 物理分离法

1.1.1 筛分法 筛分法是指采用 1 mm 和 5 mm 网格宽度(欧洲海洋框架战略指南 MSFD)的筛网 对不同尺寸的微塑料进行分选的方法^[17],常用于干 土样品中微塑料的初步分离,可以在一定程度上简 化微塑料的进一步分析检测。在以往的研究中存在不 同的筛分尺寸。例如,对于干燥的沉积物/海滩样品,Phuong 等^[18]采用 1 mm 筛进行筛分,Ballent 等^[19]采 用 5.6 mm、2.0 mm 以及 0.063 mm 的筛网进行筛分, 而美国国家海洋和大气管理局(NOAA)建议采用

5 mm 筛去除较大的岩屑,再利用堆叠的 5 mm 和 0.3 mm 筛对分离的沉积物进行筛分^[20]。对于土壤样 品,一般建议先通过一个 2 mm 的筛管^[12]。

1.1.2 静电分选法 静电分选是基于土壤矿物和 微塑料的导电性差异(土壤矿物>微塑料)实现对微 塑料分离,是一种非常温和的处理方法,几乎不会 破坏微塑料结构^[21],但无法去除有机物。分选前一 般需要对土壤/沉积物样品进行冷冻干燥预处理,以 消除水分对土壤矿物和微塑料导电性的影响。 Felsing 等^[22]首次成功修改出一套适用于土壤微塑 料分选的 KWS 静电分离装置,对 63 μm~5 mm 尺 寸范围内的 6 种微塑料的回收率均能达到 90%以 上,且不受微塑料密度、形状、结垢和老化的限制。 然而,为了达到如此高的回收率,样品需要经过 3 次处理,每 150 克样品平均耗时 3~4 h。此外,由 于金属滚筒和刮刀的粘附力可能大于微塑料颗粒的 重力,造成其回收率的下降。由此,该装置对于分 选非常小的微塑料颗粒的适用性仍待考究。Enders 等^[21]对 KWS 静电分离装置进行了评估,发现微塑 料的回收率高度依赖于其粒径大小,且该装置对细 颗粒含量较高的土壤的分离效果较差。总体而言, 该装置适合于分离粒径较大(100 μm 以上)且分散 性较好的沉积物和砂质土壤中直径大于 500 μm 且 老化程度较低的微塑料^[23],尤其适合于样品量较大 (>1 kg)的沉积物的分离。

1.1.3 密度分离法 环境介质中发现的微塑料的

密度通常为 0.8~1.4 g·cm^{-3[24]},而土壤样品的密度 通常为 2.6~2.7 g·cm^{-3[25]},两者的密度差异使得密 度分离法广泛应用于土壤介质中微塑料的提取。然 而,土壤的团聚体效应使得微塑料与土壤有不同程 度的融合^[12],从而降低微塑料的提取效率,同时还 会导致后续分析中出现信号畸变(如傅里叶红外光谱 和拉曼光谱分析)。由此,在溶剂提取前通常采用超 声、搅拌、曝气和连续流等方法来破坏附着体^[26-27]。

目前,不同密度的溶液已用于土壤中微塑料的 提取,其种类、密度及提取效率信息如表2所示。

Iable 2 Basic information about density solution used for microplastics extraction				
种类 Type	密度 Density/(g·cm ⁻³)	提取微塑料种类 Applicable MPs	回收率 Recovery	参考文献 Reference
H ₂ O	1.0	PP, PE	40%~90%	[28]
NaCl	1.2	PS, PP, PE, PA, PC, ABS, PMMA	69%~98%	[29-30]
NaBr	1.55	各类 MPs	85%~100%	[31]
NaI	1.6~1.8	PVC	98%~100%	[32]
NaCl+NaI	约 1.5	各类 MPs	68%~99%	[33-34]
$3Na_2WO_4 \cdot 9WO_3 \cdot H_2O$	1.4	各类 MPs	—	[19]
CaCl ₂	1.5	各类 MPs	93%~98%	[9]
$ZnCl_2$	1.6~1.7	各类 MPs	85%~98%	[35]
$ZnBr_2$ (25%)	1.71	各类 MPs	95%~100%	[28]
HCO ₂ K	1.5	PE, PP, PS, PET 等	—	[36]

表 2 微塑料提取剂信息

. .

水溶液是最简单且无害的提取剂,但是其使用 范围仅限于密度小于 1 g·cm⁻³的微塑料颗粒。由于 大部分农用地膜是由密度<1 g·cm⁻³的 LDPE 或 PP 制成^[37],因此微塑料可以漂浮在蒸馏水上,降低分 离成本。

当微塑料的密度未知时,提取和浮选需要使用高 密度的盐溶液。NaCl 溶液是欧洲海洋框架战略指南 MSFD 推荐且最为常用的微塑料提取剂,具有成本 低、无毒害作用等优点^[38]。大量研究表明,NaCl 溶 液的最大密度为 1.2 g·cm⁻³(即饱和 NaCl 溶液密度), 只能用于提取 PE、PP 和 PS 等密度较低的微塑料^[20]。 Liu 等^[29]虽然通过增加萃取和超声波处理的次数、延 长浮选时间,成功使用 NaCl 溶液提取出 PE、PP、 PS、PA、PC、ABS 和 PMMA 等 7 种塑料,但仍旧 无法分离出 PET、PVC 等高密度聚合物。2019 年的 统计数据表明,PET 和 PVC 产量占全球塑料总产量 的 17.9%^[2],将不可避免地汇入土壤环境,采用低密 度提取剂很可能造成对微塑料污染程度的低估。

为克服这一问题,研究者们开始关注其他高密 度盐溶液的提取效果和应用潜力,其中一些已经实 际应用于环境样品中(如 CaCl₂),而另一些仍处于 实验探索阶段(如ZnBr₂)。在土壤中,通常选用聚 钨酸钠(3Na₂WO₄·9WO₃·H₂O,SPT)进行有机-矿 物复合体中颗粒有机物和土壤有机质(SOM)的分 离^[39],该密度溶液也同样适用于土壤/沉积物中微塑 料的分离^[19]。CaCl₂溶液也是常用的微塑料提取剂 之一, 与 NaCl 溶液相比, 其提取效率相对较高, 但 是二价 Ca²⁺可能会桥接有机分子的负电荷, 促进土 壤有机质结块,干扰后续微塑料的识别^[9]。van Cauwenberghe 等^[40]提出微塑料提取剂的最佳密度 范围是 1.6~1.8 g·cm⁻³, 使用 NaI 和 ZnCl2 可以满足 这一要求。Nal 溶液的密度高达 1.8 g·cm⁻³,能提取 所有类型的微塑料,但十分昂贵,并且氧化条件会 限制其应用^[34]。从经济成本和萃取效率的角度, Han

等^[33]建议采用 NaCl 和 NaI 1:1 的混合溶液进行最 佳浮选。Nuelle 等^[34]也采用 NaCl 和 NaI 的混合溶 液对微塑料进行分离,其对各类微塑料分离效率为 68%~99%。考虑到 Nal 对环境的危害和对水生生物 的胚胎毒性, Liu 等^[31]建议使用 NaBr 溶液来提取土 壤中的 MPs, 因为 NaBr 是一种安全、无腐蚀性和 廉价的沉积物分离试剂。Imhof 等^[27]开发的慕尼黑 塑料沉积物分离器(MPSS)使用 ZnCl₂溶液从沉积 物种分离出各种微塑料,提取率高达95%~100%。 Zobkov 和 Esiukova^[41]验证了这一结果,但同时也发 现其对老化塑料的提取率大幅降低, 仅为 13%~ 39%。同时, ZnCl, 具有腐蚀性和危害性^[42]。在使用 过程中,为使 ZnCl₂达到最大密度,通常需要额外 加入酸溶液,可能与土壤中的天然成分(尤其是碳 酸盐)发生反应,导致形成致密的泡沫,严重妨碍 提取过程^[41]。Coppock 等^[43]基于 MPSS 原理设计了 一种由 PVC 管、PVC 球阀和由磁性搅拌棒搅拌的 ZnCl。组成的沉积物-微塑料-沉积物隔离单元,兼具 高提取率、低成本和便携的优点。但是来自 PVC 管 的磨损可能污染样品,所以需要将 PVC 排除在分析 之外,可能会造成大量的信息损失。挪威技术研究 所同样基于 MPSS 原理开发设计了 Bauta 分离器, 分离介质为 ZnCl₂和 CaCl₂的混合溶液,对纤维和球 团的提取率分别能达到 82%和 100%^[44],但是其对 土壤样品的适用性还有待验证。其他密度溶液还包 括 ZnBr2^[28]、NaCl-Na2WO4^[45]和 50% KI^[18]等,相关 研究尚处于起步阶段。

综上,与 NaCl 相比,这些替代方案均相对昂贵 且具有一定的污染风险,在使用之前应根据研究目 的和目标微塑料特性进行选择。采用密度分离法对 各种微塑料的回收率均高于 90%,说明该方法是有 效的。密度分离方法由于操作简单而被广泛使用, 但是它可能不适合分离粒径更小的塑料颗粒 (<10 μm)^[46]。而小塑料微粒(<50 μm)占总塑料 微粒的 35%~90%^[47-48],其含量不容忽视。如何有 效分离提取土壤中的小颗粒微塑料是今后需要关注 的问题。此外,微塑料与土壤基质有着不同程度的 结合,采用密度分离法不足以去除有机物。

1.1.4 磁性分离法 磁性分离法的实现主要依赖 于微塑料的疏水性,由 Grbic 等^[49]首次提出应用于 微塑料的分离领域,其工作原理如下:通过疏水性 碳氢化合物尾端(十六烷基三甲氧基硅烷,HDTMS) 对铁纳米颗粒进行功能化,将疏水性的铁纳米颗粒 与微塑料表面结合,进而利用磁铁提取出微塑料颗 粒。该方法的回收率在49%(PP)到90%(PE)之 间,土壤或其他环境介质中的亲脂性物质可能影响 铁纳米颗粒与微塑料表面的特异性结合,从而降低 微塑料的分离效果。磁性分离法会在一定程度破坏 微塑料的结构(尤其是脆性微塑料或老化的微塑 料),同时铁可能干扰后续微塑料的分析表征。Grbic 等^[49]提出了可能的解决办法:①通过限制微塑料与 磁铁的接触缓解微塑料的破碎;②将微塑料置于表 面活性剂或酸溶液中超声以去除微塑料表面的铁纳 米颗粒。然而,这些解决方法仍存在一些问题,如 超声会进一步破坏微塑料结构,对后续的分析造成 影响。

相较于利用磁性分离法对微塑料进行分离提 取,一些研究更关注于利用磁性材料对微塑料进行 去除^[50-51]。Rhein 等^[51]将磁种过滤(MSF)用于稀 悬浮液中微塑料的分离,其分离效率在广泛的 pH 范围内均能达到 95%。该过程的分离原理与 Grbic 等^[49]提出的磁性分离法类似,通常包括以下两个步 骤:①将磁种粒子分散到悬浮液中,并与目标粒子 (微塑料)附聚:②通过磁分离除去新形成的磁性杂 团聚体。通过选择正确的磁种颗粒以及使用永磁体, MSF 能够达到长期、有效的分离效果,在一定程度 上可以节约成本。同时,该方法对亚微米级别的微 塑料具有良好的去除效果,能在一定程度上突破以 往研究对小颗粒微塑料颗粒的分离瓶颈。此外,通 过选择不同的磁种粒子可以调控可分离微塑料的粒 径范围,可以根据研究目的灵活调整。例如, Misra 等^[50]采用磁性多氧金属酸盐支撑离子液相 (magPOM-SILPs)实现了对水中特定有机、无机、 微生物污染物及微塑料长期有效的去除,其对1µm 和 10 µm 的 PS 塑料微珠的去除率均接近 100%。

1.1.5 淘析法 淘析是利用向上的气体或液体流 将较轻的粒子从较重的粒子中分离出来的过程。这 一原理在海洋生物学中被广泛应用,例如使用"巴 内特流态化沙浴"装置将小型动物从沙子中分离出 来^[52]。Claessens等^[46]首先将淘析法应用于微塑料的 分离,将其与 NaI 密度溶液结合,实现了对高密度 微塑料(如 PVC)的分离。他们根据淘析原理开发 了一种 PVC 淘析塔,通过向上的水流将较轻的颗粒 (微塑料和其他轻质材料)与较重的(沉积物)颗粒

分离,样品量大幅减少,从而需要更少的密度溶液 进行进一步的分离(如 Nal 的用量可减少 97%),一 定程度上解决了密度分离法的成本问题。淘析塔 +Nal 组合对于 PE 颗粒及塑料纤维的第一次萃取率 分别为 61%和 75%, 对 PVC 的三次萃取率高达 100%。然而,上述研究仅考虑了在最大限度减少沉 积物颗粒污染的条件下收集更多微塑料的方法优 化,并未探讨在不考虑沉积物收集量时实现微塑料 收集最大化的情况。Zhu^[53]使用 MODDE 10.1 复合 因子实验设计方法优化了淘洗塔的流速和直径参 数,在不考虑沉积物收集量情况下实现了 50.2%的 微塑料最大可行回收率。Kedzierski 等^[54]根据 Claessens 等^[46]的研究优化了淘析塔的设计,确定了 沙粒和微塑料的分离速率与其密度和粒度分级的关 系,并在不考虑沙粒回收率的条件下实现了>90%的 PVC 回收率。Hengstmann 等^[55]进一步优化设计了一 套具有更小尺寸的玻璃淘析塔装置,对 PET 和 PVC 的回收率分别能达到 80%和 72%。该装置避免了 PVC 淘析塔对样品中 PVC 微塑料定量造成的影响, 同时还减弱淘析塔尺寸带来的边缘效应。以上研究 关注的最大微塑料密度为 1.39 g·cm⁻³ (PVC),是普 通塑料中密度最高的一种,而某些含有添加剂的微 塑料可以达到更高的密度[34],其适用性仍待进一步 探索。同时,需要更完善的对照实验设计以确定淘 析法对其他类型的微塑料及塑料纤维的回收效率。 总体而言,淘析塔适用于环境样品中微塑料的分离, 近期的一些研究也成功使用该装置对沉积物及废水 污泥样品中的微塑料进行分离提取[56-57]。

1.1.6 泡沫浮选法 泡沫浮选法是一种依赖于塑 料密度及表面疏水性的分离方法,通常应用于回收 行业^[58],例如从废料和不同塑料混合物中分离塑料 颗粒^[59]或用于各类包装材料中 PET 的分离^[60]。其原 理如下:气泡将选择性地附着到疏水性更高的轻质 微塑料颗粒上并向上携带,从而将它们与疏水性较 小的基质分离^[27,46]。但是,Imhof等^[27]的实验结果 显示,泡沫浮选从沉积物中分离出微塑料的平均效 率非常低,仅为55%±28%,且在不同聚合物类型之 间的差异很大。总体而言,泡沫浮选法能够较好地 去除密度低的塑料颗粒,但是对密度高的塑料颗粒 回收率低。泡沫浮选效果在很大程度上依赖于微塑 料的物理特性^[61],如容重、粒度、形状、表面能量 和表面粗糙度。风化过程和塑料添加剂的使用也会 改变塑料的表面特性,从而影响浮选效果^[59]。

1.2 化学分离法

1.2.1 油提法 油提法是指利用微塑料的亲油性 将微塑料萃取到油层,而其他杂质保留在水中,从 而实现微塑料的分离。该方法由 Crichton 等^[62]首先 提出。他们将干沉积物样品与水、菜籽油充分混合, 直到油、水和矿物完全分开。一旦微塑料颗粒接触 到菜籽油,将会被萃取到油层。根据 Crichton 等^[62] 的研究结果,7种微塑料的回收率超过90%,优于 同一观测条件下采用 Nal 和 CaCl₂的密度分离效果。 Crichton 等^[62]认为该方法简单、安全、廉价、省时, 且经过酒精洗涤后无菜籽油残留,不会干扰后续微 塑料的光学检测。然而, Lares 等^[63]对该方法的测试 结果表明,酒精不能去除所有菜籽油的痕迹,会对 后续的拉曼光谱和 FTIR 光谱鉴定产生影响。Mani 等[64]最近的一项研究测试了蓖麻油对不同环境基质 中微塑料的提取效果,结果显示蓖麻油对四种微塑 料聚合物 (PP、PS、PMMA 和乙二醇改性聚对苯二 甲酸乙二醇酯 PET-G)的平均回收率高达 99%±4%。 然而,对于未加标的河流悬浮物样品,大多数(76%) PS 微塑料没有被萃取到油层, 而是在固相中被发 现。对于富含有机物的样品,需要额外的H2O2消解 步骤来实现样品纯化。此外, Lares 等^[63]指出, 分离 漏斗的使用(在 Mani 等的研究中也被使用)会限制 微塑料回收的尺寸上限,分离含有较大颗粒的样品 (如堆肥)时可能会堵塞漏斗。Scopetani 等^[65]针对 以上问题,从油的种类和操作步骤两方面对油提法 进行了进一步的优化。他们对不同密度和极性的油 (如油菜籽、矿物油、合成油、橄榄油)进行了初步 实验,优选出对微塑料具有更高亲和力的橄榄油作 为萃取剂,同时通过冷冻样品避免了在分离过程中 分液漏斗的使用。结果显示,该方法的分离回收率 高达 90%±2%至 97%±5%, 且对 PS 微塑料具有较好 的萃取效果;微塑料样品经氧化和己烷冲洗后无油 脂残留,不会影响到后续的光谱测定。

总体而言,油提法具有简单、安全、廉价、省 时等优点,在实验室条件下展现出良好的提取效果, 但是其对非人工添加的环境微塑料样品的回收效果 还有待进一步的研究。

1.2.2 加压流体萃取 加压流体萃取 (PFE)是 一种在亚临界温度和压力条件下使用的溶剂提取技术,可以从固体材料中回收半挥发性有机物,常用

于土壤、沉积物和废物中的有机污染物的提取,是 美国 EPA 认定的标准提取技术。Fuller 和 Gautam^[66] 首先开发了一种基于加压流体萃取技术的微塑料提 取方法,操作步骤如下:①在100 ℃条件下采用甲 醇对微塑料进行预萃取,以消除油脂等半挥发性有 机化合物的干扰;②在180 ℃条件下采用二氯甲烷 (DCM)进行加压流体萃取。结果显示,基于 PFE 的萃取方法对固体基质(如城市垃圾和土壤)中PE、 PVC 和 PP 等微塑料的平均回收率能达到 84.5%~ 94%,并且可以有效提取粒径小于 30 µm 的微塑料。 Dierkes 等^[67]同样先采用甲醇在 100 ℃条件下进行 预萃取,后采用毒性较低和挥发性较小的四氢呋喃 (THF)作为二氯甲烷的替代,在185 ℃条件下提取 微塑料,经历3个萃取周期后对PE和PP的提取率 能达到 86.7%和 83.3%, 分别在第 4 和第 6 个萃取 周期后能完全萃取 PE 和 PP。然而,上述方法中采 用的甲醇预萃取步骤可能会去除一些塑料,导致对 微塑料含量的低估。由于在 100 ℃下可定量回收

PC、PMMA和PS(>93%),在180℃下可定量回 收PE、PET、PP和PVC,Okoffo等^[68]省略了甲醇 预萃取步骤,直接采用二氯甲烷在180℃条件下实 现对PE、PP、PVC、PS、PMMA、PC和PET 微塑 料的一步萃取,平均萃取效率>80%。然而,加压流 体萃取过程可能会改变微塑料的粒子形态,从而影 响后续的物理表征,因此无法准确判断微塑料的生 物毒性、来源和移动性。尽管如此,加压流体萃取 自动化程度高、成本低、效率高,仍是当前最有潜 力的微塑料分离技术之一。

1.3 去除有机质的相关方法

土壤中有机质的密度通常在 1.0~1.4 g·cm⁻³之 间,与 PET 和 PA 等微塑料的密度相近^[26]。因此, 对于高有机质含量的土壤而言,简单的密度分离法 并不能很好地实现微塑料的分离^[9],还需要增加有 机物的去除步骤。土壤中有机质的去除方法包括酸 消解、碱消解、氧化法及酶解法。表 3 总结了采用 不同实验方法对有机质的去除效果。

表 3	去除微塑料上有机质的相关方法及其效果
表 3	去除微塑料上有机质的相关方法及其效果

方法类别	试剂	对象	效果	参考文献
Method	Reagent	Object	Effect	Reference
酸消解	69%~71%HNO ₃	马尼拉蛤组织	良好	[69]
	$22.5 \text{ mol} \cdot L^{-1} \text{ HNO}_3$	贻贝组织	良好	[46]
	HNO ₃	土壤样品	93%~98%MPs 回收率	[9]
	HCl	—	差	[70-72]
	HNO_3 : $HClO_4$ (4:1)	海洋动物组织	良好	[73-74]
碱消解	$1 \text{ mol} \cdot L^{-1} \text{ NaOH}$	海洋样品	90.0%±2.9%消解效率	[70]
	$2 \text{ mol} \cdot \text{L}^{-1} \text{NaOH}$	海洋样品	85.0%±5.0%消解效率	
	10 mol·L $^{-1}$ NaOH (60 $^{\circ}\!\!\mathbb{C}$)	海洋样品	91.3%±0.4%消解效率,破坏 PA、聚酯纤维、PE	[70]
			和 PVC	
	10 mol·L ⁻¹ NaOH (60 $^{\circ}\!\!\mathrm{C}$)	富含植物的样品	100%MPs 回收率,破坏聚酯纤维和 PE	[75]
	10 mol·L ⁻¹ NaOH (60 $^{\circ}\mathrm{C}$)	海洋生物组织	破坏 PET、CA 和 PC,但不破坏 PA 和 PVC	[76]
	10%KOH, 2~3周	鱼的消化道	不降解 MPs, 难以完全去除有机质	[77]
	10%KOH (60 $^{\circ}\!\!\mathrm{C}$), 24 h	海洋生物组织	99.6%~99.8%消解效率	[76]
	KOH : NaClO (1:1)	适合易降解 MPs	良好	[78]
氧化法	$30\%H_2O_2$	沉积物样品	不降解 MPs, 但未说明 MPs 类型(原始还是风化	[79]
			后的)	
	$30\%H_2O_2$, 7 d	生物组织	92%的大颗粒生物组织(>1 mm)、25%的小颗粒	[34]
			(<1 mm)完全溶解或失去颜色	

 Table 3
 Methods for removing organic matter from MPs and their effects

1+++

				
方法类别	试剂	对象	效果	参考文献
Method	Reagent	Object	Effect	Reference
	$35\%H_2O_2$ ($55~^\circ\!\mathrm{C}$), $~7~d$	生物组织	70%MPs 回收率	[80]
	$15\% H_2 O_2$ ($75\ ^\circ\! C$), $~24\ h$	海洋雪	与 30%H ₂ O ₂ 效果相当	[81]
	Fenton	废水、土壤、沉积	优于 H_2O_2 , 不改变原始 PE、PP 和 PVC, 无法去	[82]
		物、植物材料和动	除生物源物质	
		物组织		
	WPO	水和沉积物样品	消解效率和 MPs 回收率未知; NOAA 技术备忘录	[20]
			推荐	
	优化 WPO	纤维素等	可能会改善植物有机物的消化,但需要较长的处	[83]
			理时间	
酶解法	蛋白酶 K	含浮游生物的海水	消解效率>97%,不降解 MPs	[70]
		样品		
	工业酶	生物组织	便宜, 消解周期短	[84]
	酶+H ₂ O ₂	废水样品	良好	[85]
	顺序酶消解	复杂水生样品	良好	[86]

1.3.1 酸消解 酸消解是指在开放式或封闭式系 统中使用强无机酸氧化和破坏化合物,导致分子裂 解,通常结合高温和高压条件使用,是一种相对剧 烈的有机物去除方法,在一定程度上会消解微塑料 本身[34,76,80,84]。目前被用于消化微塑料上附着的 有机物的酸主要包括HNO3、HCI以及HNO3-HCIO4。 其中, HNO3是最常用酸消解剂, 能在很短的时间 内去除大分子有机质,且消解效果较好^[9,46,69]。 然而, HNO₃ 作为酸消解剂时, 会导致某些类型聚 合物损失(如ABS、PA、PS和PET)^[9,87]甚至消 失(如尼龙)^[88-89]。HCl不属于氧化性酸,消解效 率一般较低,通常不用于有机物的消解,但是也可 以发现一些使用 HCl 提取微塑料的研究^[70-72]。 HClO₄ 是一种强氧化剂,能彻底分解有机物,但 与有机物直接接触时会发生爆炸,因此通常与 HNO3按照体积比1:4组合使用^[73],该方法也是 ICES (国际海洋勘探理事会)建议使用的海洋动 物组织消解方法^[74]。

加热条件下会强化酸的消解效果,缩减消化时 间^[89]。然而,耐酸性低的聚合物在高温下更容易降 解,采用(热)酸消解可能会造成对微塑料环境风险 的低估^[90]。此外,热酸消解可以在一定程度上促进黑 炭的生成^[91],无法去除微塑料上附着的黑炭颗粒,不 推荐使用。因此,建议根据不同的研究目的和目标微 塑料类型选择合适的消化方法来处理样品。

1.3.2 碱消解 碱消解一般用于土壤中腐殖酸的 提取,因此也可以用来消解土壤中的微塑料样品。 目前较为常用的两种碱消解剂包括氢氧化钠 (NaOH)和氢氧化钾(KOH)^[35]。相较于酸消解, 碱消解更为温和,适用于生物样本的消解,可以使 蛋白质变性并水解化合物^[92],且对微塑料结构的影 响相对较弱^[70.76]。然而,为了完全去除有机质,碱 消解方案的运行周期通常需要 2~3 周^[77],过程十分 耗时,可能不适用于植物材料或稳定的土壤有机质 的去除^[26.75]。

通过增加摩尔浓度和温度可以提高碱消解效 率^[70.76]。然而,热碱消解会破坏特定种类微塑料的 结构,如:NaOH 热碱消解会破坏聚酯纤维、PE、 PET、CA和PC^[70.76],但是否破坏 PA和PE 结构在 不同研究中存在争议^[70.75-76];KOH 热碱消解不会降 解除 CA 外的微塑料,且 CA 在测试的各消解方案 中均会发生降解^[76]。因此,在消解过程中应避免使 用 CA 过滤器,防止污染微塑料样品。对于易降解 的塑料材料,建议采用 KOH 与 NaClO1:1的比例 混合^[78]。此外,热碱消化对植物材料的消解效率较 低^[75],可能无法消除土壤中不溶于碱的有机物,其 对土壤样品的适用性还有待探索。

1.3.3 氧化法 过氧化氢(H₂O₂)是目前最常用 于有机质去除的氧化剂^[93-94],常用于土壤样品中 有机物的去除^[29],也适用于海洋生物和沉积物样 品^[26,95]。相较于酸/碱消解,采用H₂O2对藻类和植 物的消解效果更佳^[75]。目前,大多数研究采用 30%H₂O₂浓度进行消解^[80-81], Shim 等^[96]也证实 30%H₂O₂具有比其他浓度更高的消化效率。然而, 对富含有机物的样品进行30%H2O2处理通常会导致 形成致密的泡沫,从而使大部分样品悬浮在试剂上 方^[81],阻碍了样品的过滤和进一步处理,造成微塑 料的回收率偏低^[80]。此外,关于 H₂O₂处理是否会破 坏微塑料结构尚存争议[34.79.97]。一些研究通过改变 浓度和消解温度来调节 H₂O₂的消解效果^[80-81]。通过 降低 H₂O₂浓度可以提升微塑料的回收率,低浓度的 H₂O₂ 可以在较高的温度下达到与更高浓度相当的 消解效果,然而升高温度可能会以牺牲温度敏感聚 合物的回收率为代价。

Fenton 试剂是一种高级氧化剂,也是 H_2O_2 的潜 在替代品。Fenton 法可以有效缩短反应时间,降低 反应温度,其最适 pH 范围为 3~5。Fenton 法通过 亚铁阳离子催化 H_2O_2 氧化有机成分,可以有效破坏 H_2O_2 难以消化的有机成分和无机化合物,且不会改 变原始 PE、PP 和 PVC 微塑料的表面^[97-98]。目前, Fenton 法已成功用于去除废水^[98]、土壤^[97]、沉积物 样品^[99]以及植物材料和动物组织^[100]中的有机物。 但是,Fenton 试剂对风化后微塑料的影响还有待 探索。同时,某些生物源物质可能无法用 Fenton 法去除^[82],因此可能需要补充有机去除步骤。此外, 由于强烈的放热反应,应避免在超过 60 ℃条件下^[101] (一说 40 ℃^[97])使用 Fenton 试剂处理富含有机物 的样品,以避免热降解。

NOAA 技术备忘录推荐采用湿式过氧化氢氧化 法(WPO)消解水和沉积物样品中的有机质,该方 法主要通过 0.05 mol·L⁻¹ Fe(II)催化 30%H₂O₂的 消解(加热至 75 ℃),但未说明有机质的消解效率 和微塑料的回收率^[20]。该方法对非塑料污染物(如 人的头发、棉质服装纤维、香烟过滤嘴和厕纸碎片) 没有明显的消解效果^[83],且一般需要进行 3~6次消 化才能去除大多数纤维素和其他有机物质的干扰 物,处理时间较长,难以实现对大量样品的分析。 1.3.4 酶解法 目前,许多研究已报道酶解法适 用于水生样品的处理,且对环境和塑料结构的危害 较小^[102],并具有较高的微塑料回收率,是一种有前 途的有机质消解方法。Cole 等^[70]首先开发了一种采 用蛋白酶 K 处理富含浮游生物的海水样品的酶消解 方案,其消化效率大于 97%(按重量计),优于酸/ 碱消解方案,且不降解微塑料。其他研究团队相继 开发了胰酶、胶原酶、木瓜蛋白酶以及工业酶(如 工业蛋白酶、工业脂肪酶和 Corolase 7089)的酶消 解方案并成功用于动物软组织的处理^[84,103]。其中, 工业酶价格相对便宜,能在一定程度上解决一般酶 消解方案价格昂贵、消解周期长的弊端,具有良好 的应用前景^[84]。但是,这类蛋白质水解酶可能无法 应用于土壤中稳定有机物的消解。

Mintenig 等^[85]将酶消解与 H₂O₂处理相结合,成 功用于废水样品中有机物的去除,但同样需要确认 该方案对土壤样本的适用性。Löder 等^[86]提出了一 种更有希望的顺序酶消解方法,将十二烷基硫酸钠 纯化后的样品依次通过蛋白酶、纤维素酶和几丁质 酶在特定温度下消解不同时间,实现了对有机物的 高去除效率,足够适用于复杂的水生样品,但对于 陆生植物和土壤有机质的去除可能需要另一套酶。 根据 Möller 等^[82]的观察以及 Löder 等^[86]的建议,将 Fenton 试剂、SDS 和特定酶的顺序组合可以增强对 土壤有机质的消解效果。

2 土壤微塑料的识别和定量方法

目前,土壤中微塑料常用的识别方法包括物理 识别(即目视鉴定)和化学识别(如光谱分析和质 谱分析);定量方法包括计数、称重、数学计算和仪 器分析。

2.1 目视鉴定法

目视鉴定法是微塑料分析中必不可少的步骤, 可以直接、快速地获得环境中微塑料的表面纹理和 其他特征信息。根据微塑料的大小、形状和颜色特 性可以对微塑料进行初步分类。根据尺寸,可将微 塑料分为大微塑料(1~5 mm)和小微塑料(<1 mm)。 根据形状,可将微塑料分为纤维(fiber)、碎片 (fragment)、微珠(pellets/beads)、泡沫(foam)和 薄膜(film)五类。环境中检测出的微塑料颜色包 括红色、白色、透明、蓝色、绿色、黑色、紫色、 浅黄色和棕色。 一般肉眼只能检测到可见的微塑料颗粒^[104],需 要辅以显微镜分析来评估更细的颗粒^[79]。直径 >1 mm的微塑料很容易被识别,而直径<1 mm的微 塑料则很难被识别^[24, 105],需要借助立体/解剖显微 镜和专业图像软件;对于尺寸更小、没有颜色或典 型形状的微塑料(<100 μm)基本无法通过视觉或显 微镜进行识别。一些研究通过后续的化学识别结果 (包括扫描电子显微镜^[47]、拉曼^[105]及傅里叶红外分 析^[24])判断出目视鉴定法应用于沉积物微塑料分析 时错误率高达 20%~70%。随着微塑料颗粒尺寸的 减小和干扰的增加,这种误差会增大。因此,不建 议将目视鉴别法作为当前微塑料检测中的独立识别 方法。

Zhang等^[106]根据热塑性塑料加热前后物理性质 (如形状、透明度)的变化开发了一种更为简单和经 济的视觉识别方法。他们通过比较密度分离后的样 品在130 ℃下加热前后拍摄的显微图像,将熔融颗 粒鉴定为热塑性聚合物,成功从土壤中识别出 PE 和 PP 微塑料。这种加热方法不受土壤有机质的影 响,且可以识别粒径小于 100 μm 的粒子。此外,通 过借助显微镜和图像软件,该方法还可以直观地确 定微塑料颗粒的大小、形状和数量。尽管加热法在 一定程度上忽略了热固性塑料及可熔的天然物质 (如蜡)的影响,且对微塑料形状结构有一定的破坏, 但在大多数现场实验中仍是一种经济可行的鉴定方 案。Zubris 和 Richards^[107]使用偏振光显微镜来识别 土壤中的合成纤维。该方法是一种基于合成纤维和 天然纤维在偏振光下不同物理特性的视觉识别方 法,不会破坏聚合物^[108],但需要确认其是否适用于 鉴定其他塑料和区分塑料类型。Maes 等^[35]使用亲油 性荧光染料尼罗红来专门染色环境样品中的微塑料 颗粒,根据其荧光特性进行鉴定。然而,该方案对 富含有机质的土壤样品的适用性还有待考证,因为 染料可能会通过非选择性吸附与其他亲脂性化合物 结合,影响鉴定结果。

2.2 光谱分析法

红外光谱法(FTIR)和拉曼光谱法(Raman spectrometry)是微塑料分析中最常见、最可靠但是 也最昂贵的方法^[24.27],可以精确识别微塑料的类型、 丰度、形状和大小,但无法鉴定土壤中微塑料的质 量含量^[105]。

FTIR 可以记录化学物质的特定化学键,通过将

得到的目标聚合物的光谱与谱库中的标准图谱进行 对比,可以识别出特定微塑料的类型。然而,FTIR 结果受到测量颗粒的形状、大小和颜色等的干扰。 例如,由于红外辐射的高吸收,通常会导致无法识 别黑色微塑料颗粒的 FTIR 光谱。同时,样品中多 种聚合物的同时存在会产生复杂的吸收光谱,妨碍 微塑料的鉴定。此外,FTIR 技术在土壤中的应用效 果还取决于是否有效去除土壤有机质的干扰。

Raman 是一种光子散射技术,根据不同样品分 子结构和原子的不同,落在物体上的激光束会产生 不同频率的反向散射光,从而得到不同聚合物独有 的光谱图像。Raman 可对样品进行低至 500 nm 像素 分辨率的化学成像,运行时间显著高于 FTIR^[95,109], 但不受测量颗粒的形状、大小或厚度等的干扰。此 外, Raman 对水和大气中的 CO₂不敏感。但是, 土 壤有机质的自发荧光或聚合物中有机物或颜料的背 景荧光可能会强烈干扰所需的光谱,从而导致无法 识别[110]。此外,光解老化后的微塑料的特征光谱会 发生变化(如 PVC 的特征性 C-Cl 键的信号减弱), 建议参考数据库中应包括聚合物不同降解程度的光 谱数据^[111]。总体而言,两种光谱技术均较为耗时, 且在处理土壤有机质含量高的土壤样品时均存在一 定的困难。Raman 能更好地响应非极性对称键,而 FTIR 可以更清晰地鉴定极性基团^[105],这两种技术 具有互补性。进行分析之前,两种技术均需要对样 品进行彻底的纯化[112]。

将近红外(NIR)光谱分析与化学计量学结合 用于微塑料的定量分析,可以克服上述光谱技术耗 时的缺点,且无需任何化学预处理即可快速评估微塑 料的化学组成^[113]。Corradini等^[114]评估了使用 vis-NIR 光谱快速评估土壤中微塑料含量的可能性,结果表明, vis-NIR 技术适用于定量土壤中的 PET、LDPE 和 PVC, 准确度为 10 g·kg⁻¹,检测极限约 15 g·kg⁻¹,但准确性 较低。此外,该研究在测试中采用干燥的土壤样品与 微塑料混合,一定程度上忽略了环境微塑料样品的吸 附和生物污染等带来的影响。

将 FTIR 和 Raman 与不同的元件进行组合可以 提高对微塑料的识别精度。例如,将 FTIR 或 Raman 与光学显微镜联合使用(即 μ-FTIR 和 μ-Raman), 可以分别识别>10 μm 和>1 μm 的微塑料^[95.105]。配 备了显微镜的 FTIR 可以使用衰减全反射率(ATR) 和基于焦平面阵列(PFA)的反射成像模式。其中, ATR-FTIR 光谱技术通过显微镜鉴定单个颗粒,然后 使用 ATR 尖端进行检测,可以识别粒径>500 μm 的 颗粒^[115]。基于 FPA 反射成像模式的 u-FTIR 光谱技 术具有较高的横向分辨率, 配置有用于空间分辨光 谱的自动 xvz 载物台,能够使用空间分辨光谱检测 选定网格区域内的单个粒子。该技术将化学成像和光 谱分析的结合,与单次成像相比,速度更快且不影响 空间分辨率,可以识别粒径 20~500 µm 的颗粒^[86], 但仍至少需要9个小时才能扫描一张滤纸。将 FTIR 和 Raman 与原子力显微镜 (AFM) 结合, 可以突破 <1 µm 的尺寸限制,为纳塑料的识别提供了一种有 效的解决途径。AFM 探头可以通过与样品接触和非 接触方式提供纳米级分辨率的图像,将 AFM 与 FTIR 或 Raman 结合可以确定样品的化学成分。其 中, AFM-Raman 是两台仪器的简单组合, 通过同时 或独立扫描实现; AFM-IR 是将两种仪器合并在一 起,可以得到 50~100 nm 的空间分辨率的红外吸收 图像,且该方法已成功用于100 nm PS 纳塑料的识 别^[116]。然而,使用 AFM-IR 在未知样品中找到要聚 焦的纳塑料是十分困难且耗时的,且该方法在识别 土壤介质中复杂微塑料方面的应用效果还未可知。

Shan 等^[117]的研究表明,高光谱成像技术也是 一种潜在的微塑料识别技术,可以直接确定和可 视化土壤表面粒径范围 0.5~5 mm 的微塑料。 Primpke 等^[118]利用基于量子级联激光的高光谱红 外化学成像技术与自动数据分析相结合的方法, 实现了对更大视野范围内微塑料的快速测量,即 在 36 min 内测定了 144 mm²区域范围内的微塑 料。相较于现阶段的检测技术(测量时间从数小 时到数天不等),该方法具有很高水平的数据质量 和优越的检测效率,为微塑料自动化分析的进一 步发展提供了启示。

2.3 热分析方法

热分析方法是根据聚合物的热稳定性来测量其 物理和化学性质的变化,从而鉴定出微塑料的方法。 表4总结对比了现阶段热分析方法的原理和优劣。

表 4 现阶段微塑料热分析方法的原理及优劣比较

Table 4 Comparison between the current thermal analysis method	ls
--	----

分析方法 Analytical method	热解气相色谱质谱法 Py-GC-MS	热重分析法/热重分析-质谱法/ 热重分析-差示扫描量热法 TGA/TGA-MS/TGA-DSC	热萃取-热解气相色谱质谱法 TED-GC-MS
原理	聚合物的热降解	样品分解和失重监测	固气萃取热解吸
识别依据	特征降解产物	样品在加热过程中的质量损失	样品在加热过程中的质量损失
尺寸限制	$50{\sim}1500~\mu m$	200~500 μm	_
优势	可以用于表征和大规模量	适用于大批量样品	可分析高质量样品;性能优于 TGA
	化多种聚合物类型及其有		和 Py-GC-MS;分析时间相对较短
	机添加剂;灵敏度高		
劣势	样本量限制在 0.5 mg 以下	难以分辨质量和降解温度数据相似的复合	难以分辨质量和降解温度数据相似
		物;气体直接注入质量分析器,造成误差	的复合物

热解气相色谱质谱法(Py-GC-MS)主要通过分 析聚合物的热降解产物来鉴定微塑料类型,是一种 破坏性技术。首先,样品在惰性气氛下热降解;其 次,通过气相色谱法(GC)分离热解后的微塑料的 结构片段;最后,使用 MS 对其进行鉴定和定量。 该方法可以用于表征和大规模量化多种聚合物类型 及其有机添加剂^[34, 119-120],适用于环境样品中微塑 料的检测^[121],无需进行样品预处理。但是,该方法 的最高操作温度为 250~300 ℃,沸点高于 300 ℃ 的高分子量热解产物通常会污染甚至堵塞管路,并导 致传输损失^[122]。同时,该方法还会受到样品量大小的 限制,即一次测量仅分析少量样品(5~200 μg)^[123]。

热重分析法(TGA)是指在惰性气氛下,采用 程序控温加热样品,根据不同微塑料的质量损失与 温度或时间的关系来识别微塑料的方法,常用于土 壤环境样品中微塑料的分析^[124]。将TGA与其他分 析设备结合使用时,可以获得更详细的测量数据。 差示扫描量热法(DSC)和质谱仪(MS)可以分别 提供微塑料样品气体产物的定性和定量信息。将 TGA 与 DSC 结合可以识别不同微塑料吸热相变热 流和峰值温度,并成功用于识别废水样品中的 PE 和 PP 微塑料^[125]。将 TGA 与 MS 结合可在质谱检测 器上检测离子信号并测量微塑料样品的质量损失。 David 等^[126]成功采用 TGA-MS 定量分析土壤样品中 的 PET,且无需对样品进行预处理。与 Py-GC-MS 相比,TGA-MS 更适用于大批量样品,但在数据解 释方面难以分辨质量和降解温度相似的复合物^[127]。 现阶段,热重分析法还仅限于上述种类微塑料的识 别,仍需要进一步开发。同时,热重分析法会破坏 微塑料结构,无法进行后续分析(如获取微塑料的 形状、尺寸、颜色等信息)。

热萃取-热解气相色谱质谱法(TED-GC-MS) 是热重分析和固相萃取热解吸的结合,可以对 PE、 PET、PP 和 PS 进行精确而有效的定量分析^[122]。该 方法将分析过程分为热萃取过程和 GC-MS 系统,克 服了 Py-GC-MS 方法中高分子量热解产物污染/堵塞 管路的问题。同时,该方法突破了 Py-GC-MS 对样 品量的限制,每次运行最多可容纳 100 mg 样品,处 理时间仅为 2~3 h^[122],但同样对微塑料结构具有破 坏性。

3 展望

由于采用的分离、识别和定量手段的不同,不同的研究者对实验结果的表述存在较大差异,导致不同地区的微塑料的分析数据和污染程度难以横向比较。同时,一些应用于水体/沉积物/水生生物中微塑料分析的很有潜力的方法,在应用于土壤时都存在一定的限制。由此,本文提出以下展望:

1)根据不同的研究目的选择适合的分离和识别 定量方法。针对特定种类的微塑料的分析,可以采 用高效且不损害目标微塑料的方法。例如,实验室 对特定微塑料的研究以及农田中微塑料(主要是 PP 和 PE)的分离提取,均可针对目标微塑料的性质选 择合适的分离分析方法。针对环境样品的采集和未知 塑料种类的统计,在选择分离分析方法时需要考虑是 否会降解一些稳定性较低的塑料纤维(如 PE, PA 和 聚酯纤维),从而造成对某类微塑料污染的低估。

2)建立适合土壤中小颗粒微塑料的分析方法。
 目前,暂时没有适用于土壤中小颗粒微塑料的分离

分析方法,但是通过修改和组合已有方法可能可以 实现,这方面的研究需要进一步探索。

3)建立一套适合土壤中微塑料分离提取和识别 定量的标准方法。开展不同分离提取和识别定量方 法学的比较研究,形成统一的技术规范。在同一观 测条件下对不同的分析方法进行效果评价,筛选出 最优的分离纯化和识别定量方法。同时,加强对结 果可重现性的研究,并综合不同实验室的研究结果, 建立和完善土壤微塑料样品的分析技术规程,增强 不同地区监测数据的准确性、可靠性和可比性。

4) 如何实现高效分离/识别/定量且不损害微塑 料结构, 是今后的研究重点。目前, 微塑料主流的 分离和识别定量方法分别是密度分离法以及红外、 拉曼和热分析的相关方法,但是这些方法都存在一 定的局限性。土壤是一个复杂体系,有机质含量高, 且与微塑料有不同程度的结合,密度分离法无法实 现对密度与微塑料相似的有机质的去除,往往需要 进行消解处理,而不同的消解方法对微塑料有不同 程度的损坏, 甚至造成后续识别定量中对特定类别 微塑料含量的低估。同时,大多数微塑料的识别定 量方法都会对微塑料结构造成一定破坏,且这些破 坏大多是不可逆的,可能会影响后续微塑料尺寸和 其他物理特性的鉴别。此外,大多数分析方法具有 耗时耗力的缺点,需要进一步发展高光谱成像技术 结合自动化数据分析等方法,逐步实现微塑料的高 效半自动化分析。因此,需要更多的研究来探索适 合土壤微塑料的分离检测方案,在理想情况下这种 方案成本低、不会改变塑料特性且耗时短。

参考文献(References)

- [1] Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62 (8): 1596—1605.
- [2] Plastics Europe, 2020. Plastics—the facts 2020, an analysis of european plastics production, demand and waste data[R]. www.plasticseurope.org
- [3] Alimi O S, Farner Budarz J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52 (4): 1704-1724.
- Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347 (6223): 768-771.
- [5] Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment: A review[J]. Marine Pollution Bulletin, 2011, 62 (12): 2588–2597.

- [6] Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46 (12): 6453-6454.
- [7] Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178: 189—195.
- [8] Yang J, Li L Z, Zhou Q, et al. Microplastics contamination in soil environment: Sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58 (2): 281—298. [杨杰,李连祯,周倩,等. 土壤环境中微塑料污染:来源、过程及风险[J]. 土壤学报, 2021, 58 (2): 281—298.]
- [9] Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52 (6): 3591-3598.
- Li J, Song Y, Cai Y B. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 2020, 257: 113570.
- [11] Nizzetto L, Langaas S, Futter M. Pollution: Do microplastics spill on to farm soils?[J]. Nature, 2016, 537 (7621): 488.
- Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12–20.
- [13] de Souza Machado A A, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52 (17): 9656-9665.
- Liu H F, Yang X M, Liu G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907-917.
- [15] Huerta Lwanga E, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of *Lumbricus terrestris*[J]. Environmental Pollution, 2017, 220: 523-531.
- [16] Nizzetto L, Bussi G, Futter M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science Processes & Impacts, 2016, 18 (8): 1050–1059.
- Galgani F, Hanke G, Werner S, et al. Marine litter within the European marine strategy framework directive[J]. ICES Journal of Marine Science, 2013, 70 (6): 1055-1064.
- [18] Phuong N N, Poirier L, Lagarde F, et al. Microplastic abundance and characteristics in French Atlantic coastal sediments using a new extraction method[J]. Environmental Pollution, 2018, 243: 228–237.
- [19] Ballent A, Corcoran P L, Madden O, et al. Sources and sinks of microplastics in Canadian Lake Ontario

nearshore, tributary and beach sediments[J]. Marine Pollution Bulletin, 2016, 110 (1): 383-395.

- [20] Masura J, Baker J E, Foster G D, et al. Laboratory methods for the analysis of microplastics in the marine environment : Recommendations for quantifying synthetic particles in waters and sediments[J]. 2015.
- [21] Enders K, Tagg A S, Labrenz M. Evaluation of electrostatic separation of microplastics from mineral-rich environmental samples[J]. Frontiers in Environmental Science, 2020, 8: 112.
- [22] Felsing S, Kochleus C, Buchinger S, et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior[J]. Environmental Pollution, 2018, 234: 20-28.
- [23] Li P F, Hou D Y, Wang L W, et al. Microplastics pollution in agricultural soils: Sources, transportation, ecological effects and preventive strategies[J]. Acta Pedologica Sinica, 2021, 58 (2): 314—330. [李鹏飞, 侯德义,王刘炜,等. 农田中的(微)塑料污染:来源、 迁移、环境生态效应及防治措施[J]. 土壤学报, 2021, 58 (2): 314—330.]
- [24] Hidalgo-Ruz V, Gutow L, Thompson R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46 (6): 3060-3075.
- [25] Suthar M, Aggarwal P. Environmental impact and physicochemical assessment of pond ash for its potential application as a fill material[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2 (3): 20.
- [26] Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435.
- [27] Imhof H K, Schmid J, Niessner R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments[J]. Limnology and Oceanography: Methods, 2012, 10 (7): 524-537.
- [28] Quinn B, Murphy F, Ewins C. Validation of density separation for the rapid recovery of microplastics from sediment[J]. Analytical Methods, 2017, 9 (9): 1491-1498.
- [29] Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242: 855-862.
- [30] Liu S L, Jian M F, Zhou L Y, et al. Distribution and composition of microplastics in sediments in the estuaries of the Ganjiang River leading into Lake Poyang[J]. Acta Pedologica Sinica, 2020, 57 (4): 908—916. [刘淑丽, 简敏菲,周隆胤,等. 鄱阳湖-赣江各支入湖段沉积物 中微塑料分布及其组成特征[J]. 土壤学报, 2020, 57 (4): 908—916.]

- [31] Liu M T, Song Y, Lu S B, et al. A method for extracting soil microplastics through circulation of sodium bromide solutions[J]. Science of the Total Environment, 2019, 691: 341-347.
- [32] van Cauwenberghe L, Vanreusel A, Mees J, et al. Microplastic pollution in deep-sea sediments[J]. Environmental Pollution, 2013, 182: 495–499.
- [33] Han X X, Lu X Q, Vogt R D. An optimized density-based approach for extracting microplastics from soil and sediment samples[J]. Environmental Pollution, 2019, 254: 113009.
- [34] Nuelle M T, Dekiff J H, Remy D, et al. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 2014, 184: 161-169.
- [35] Maes T, Jessop R, Wellner N, et al. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red[J]. Scientific Reports, 2017, 7: 44501.
- Zhang K, Xiong X, Hu H J, et al. Occurrence and characteristics of microplastic pollution in Xiangxi bay of Three Gorges Reservoir, China[J]. Environmental Science & Technology, 2017, 51 (7): 3794–3801.
- Yan C, He W, Liu S, et al. Application of mulch films and prevention of its residual pollution in China[G]. Beijing: Science Press, 2015.
- [38] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304 (5672): 838.
- [39] Corcoran P L, Biesinger M C, Grifi M. Plastics and beaches: A degrading relationship[J]. Marine Pollution Bulletin, 2009, 58 (1): 80-84.
- [40] van Cauwenberghe L, Devriese L, Galgani F, et al. Microplastics in sediments: A review of techniques, occurrence and effects[J]. Marine Environmental Research, 2015, 111: 5-17.
- Zobkov M B, Esiukova E E. Evaluation of the Munich Plastic Sediment Separator efficiency in extraction of microplastics from natural marine bottom sediments[J]. Limnology and Oceanography: Methods, 2017, 15(11): 967-978.
- [42] Jaafar N, Musa S M, Azfaralariff A, et al. Improving the efficiency of post-digestion method in extracting microplastics from gastrointestinal tract and gills of fish[J]. Chemosphere, 2020, 260: 127649.
- [43] Coppock R L, Cole M, Lindeque P K, et al. A small-scale, portable method for extracting microplastics from marine sediments[J]. Environmental Pollution, 2017, 230: 829–837.
- [44] Mahat S. Separation and quantification of microplastics from beach and sediment samples using the bauta microplastic-sediment separator[D]. Ås : Norwegian University of Life Sciences, 2017.

- [45] Frère L, Paul-Pont I, Rinnert E, et al. Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest(Brittany, France) [J]. Environmental Pollution, 2017, 225: 211-222.
- [46] Claessens M, van Cauwenberghe L, Vandegehuchte M B, et al. New techniques for the detection of microplastics in sediments and field collected organisms[J]. Marine Pollution Bulletin, 2013, 70 (1/2): 227–233.
- [47] Eriksen M, Mason S, Wilson S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77 (1/2): 177-182.
- [48] Imhof H K, Laforsch C, Wiesheu A C, et al. Pigments and plastic in limnetic ecosystems : A qualitative and quantitative study on microparticles of different size classes[J]. Water Research, 2016, 98: 64-74.
- [49] Grbic J, Nguyen B, Guo E D, et al. Magnetic extraction of microplastics from environmental samples[J]. Environmental Science & Technology Letters, 2019, 6 (2): 68-72.
- [50] Misra A, Zambrzycki C, Kloker G, et al. Water purification and microplastics removal using magnetic polyoxometalate-supported ionic liquid phases (magPOM-SILPs) [J]. Angewandte Chemie International Edition, 2020, 59 (4): 1601-1605.
- [51] Rhein F, Scholl F, Nirschl H. Magnetic seeded filtration for the separation of fine polymer particles from dilute suspensions : Microplastics[J]. Chemical Engineering Science, 2019, 207: 1278-1287.
- [52] Southwood T R E , Henderson P A. Ecological methods[M]. John Wiley & Sons, 2009.
- [53] Zhu X. Optimization of elutriation device for filtration of microplastic particles from sediment[J]. Marine Pollution Bulletin, 2015, 92 (1/2): 69-72.
- [54] Kedzierski M, Le Tilly V, Bourseau P, et al. Microplastics elutriation from sandy sediments : A granulometric approach[J]. Marine Pollution Bulletin, 2016, 107 (1): 315–323.
- [55] Hengstmann E, Tamminga M, vom Bruch C, et al. Microplastic in beach sediments of the Isle of Rügen (Baltic Sea) - Implementing a novel glass elutriation column[J]. Marine Pollution Bulletin, 2018, 126: 263-274.
- [56] Buenaventura N. Microplastic pollution in an urban norwegian river sediment-an investigation of freshwater sediment extraction by elutriation[D]. Norway : Norwegian University of Life Sciences, 2017.
- [57] Rodríguez-Alegre R, Sánchez-Ramírez J E, Pastor L, et al. Microplastics extraction and counting from wastewater and sludge through elutriation and

hydrocyclone[M]//Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea. Cham : Springer International Publishing, 2020: 53—59.

- [58] Alter H. The recovery of plastics from waste with reference to froth flotation[J]. Resources, Conservation and Recycling, 2005, 43 (2): 119–132.
- [59] Fraunholcz N. Separation of waste plastics by froth flotation—A review, part I[J]. Minerals Engineering, 2004, 17 (2): 261—268.
- [60] Carvalho T, Durão F, Ferreira C. Separation of packaging plastics by froth flotation in a continuous pilot plant[J]. Waste Management, 2010, 30 (11): 2209–2215.
- [61] Shent H, Pugh R J, Forssberg E. A review of plastics waste recycling and the flotation of plastics[J]. Resources, Conservation and Recycling, 1999, 25 (2): 85-109.
- [62] Crichton E M, Noël M, Gies E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments[J]. Analytical Methods, 2017, 9 (9): 1419-1428.
- [63] Lares M, Ncibi M C, Sillanpää M, et al. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples[J]. Environmental Science and Pollution Research, 2019, 26 (12): 12109–12122.
- [64] Mani T, Frehland S, Kalberer A, et al. Using *Castor* oil to separate microplastics from four different environmental matrices[J]. Analytical Methods, 2019, 11 (13): 1788–1794.
- [65] Scopetani C, Chelazzi D, Mikola J, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples[J]. Science of the Total Environment, 2020, 733: 139338.
- [66] Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science & Technology, 2016, 50 (11): 5774-5780.
- [67] Dierkes G, Lauschke T, Becher S, et al. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography[J]. Analytical and Bioanalytical Chemistry, 2019, 411 (26): 6959–6968.
- [68] Okoffo E D, Ribeiro F, O'Brien J W, et al. Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography-mass spectrometry[J]. Science of the Total Environment, 2020, 715: 136924.
- [69] Davidson K, Dudas S E. Microplastic ingestion by wild and cultured Manila clams (*Venerupis philippinarum*)

from baynes sound, British Columbia[J]. Archives of Environmental Contamination and Toxicology, 2016, 71 (2): 147–156.

- [70] Cole M, Webb H, Lindeque P K, et al. Isolation of microplastics in biota-rich seawater samples and marine organisms[J]. Scientific Reports, 2014, 4: 4528.
- [71] Desforges J P W, Galbraith M, Dangerfield N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79 (1/2): 94–99.
- [72] Karami A, Golieskardi A, Choo C K, et al. A high-performance protocol for extraction of microplastics in fish[J]. Science of the Total Environment, 2017, 578: 485-494.
- [73] De Witte B, Devriese L, Bekaert K, et al. Quality assessment of the blue mussel (*Mytilus edulis*): Comparison between commercial and wild types[J]. Marine Pollution Bulletin, 2014, 85 (1): 146–155.
- [74] International Council for the Exploration of the Sea (ICES). Ospar request on development of a common monitoring protocol for plastic particles in fish stomachs and selected shellfish on the basis of existing fish disease surveys[S]. ICES Advice, 2015.
- [75] Herrera A, Garrido-Amador P, Martínez I, et al. Novel methodology to isolate microplastics from vegetal-rich samples[J]. Marine Pollution Bulletin, 2018, 129 (1): 61-69.
- [76] Dehaut A, Cassone A L, Frère L, et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization[J]. Environmental Pollution, 2016, 215: 223-233.
- [77] Foekema E M, De Gruijter C, Mergia M T, et al. Plastic in north sea fish[J]. Environmental Science & Technology, 2013, 47 (15): 8818-8824.
- [78] Enders K, Lenz R, Beer S, et al. Extraction of microplastic from biota: Recommended acidic digestion destroys common plastic polymers[J]. ICES Journal of Marine Science, 2017, 74 (1): 326–331.
- [79] Liebezeit G, Dubaish F. Microplastics in beaches of the east Frisian Islands spiekeroog and kachelotplate[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89 (1): 213-217.
- [80] Avio C G, Gorbi S, Regoli F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues : First observations in commercial species from Adriatic Sea[J]. Marine Environmental Research, 2015, 111: 18-26.
- [81] Zhao S Y, Danley M, Ward J E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy[J]. Analytical Methods, 2017, 9 (9): 1470-1478.

- [82] Möller J N, Löder M G J, Laforsch C. Finding microplastics in soils: A review of analytical methods[J]. Environmental Science & Technology, 2020, 54 (4): 2078–2090.
- [83] Dyachenko A, Mitchell J, Arsem N. Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent[J]. Analytical Methods, 2017, 9 (9): 1412—1418.
- [84] Catarino A I, Thompson R, Sanderson W, et al. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues[J]. Environmental Toxicology and Chemistry, 2017, 36 (4): 947-951.
- [85] Mintenig S M, Int-Veen I, Löder M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108: 365–372.
- [86] Löder M G J, Kuczera M, Mintenig S, et al. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples[J]. Environmental Chemistry, 2015, 12 (5): 563-581.
- [87] Prata J C, da Costa J P, Duarte A C, et al. Methods for sampling and detection of microplastics in water and sediment: A critical review[J]. TrAC Trends in Analytical Chemistry, 2019, 110: 150–159.
- [88] Desforges J P W, Galbraith M, Ross P S. Ingestion of microplastics by zooplankton in the northeast Pacific Ocean[J]. Archives of Environmental Contamination and Toxicology, 2015, 69 (3): 320-330.
- [89] Naidoo T, Goordiyal K, Glassom D. Are nitric acid (HNO₃) digestions efficient in isolating microplastics from juvenile fish?[J]. Water, Air, & Soil Pollution, 2017, 228 (12): 470.
- [90] Qiu Q X, Tan Z, Wang J D, et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment[J]. Estuarine, Coastal and Shelf Science, 2016, 176: 102-109.
- [91] Kappenberg A, Bläsing M, Lehndorff E, et al. Black carbon assessment using benzene polycarboxylic acids: Limitations for organic-rich matrices[J]. Organic Geochemistry, 2016, 94: 47-51.
- [92] Jin Y Y, Li H, Mahar R B, et al. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion[J]. Journal of Environmental Sciences, 2009, 21 (3): 279-284.
- [93] Jabeen K, Su L, Li J N, et al. Microplastics and mesoplastics in fish from coastal and fresh waters of China[J]. Environmental Pollution, 2017, 221: 141–149.
- [94] Zhang K, Shi H H, Peng J P, et al. Microplastic pollution in China's inland water systems: A review of findings,

methods, characteristics, effects, and management[J]. Science of the Total Environment, 2018, 630: 1641-1653.

- [95] Imhof H K, Ivleva N P, Schmid J, et al. Contamination of beach sediments of a subalpine lake with microplastic particles[J]. Current Biology, 2013, 23 (19): R867—R868.
- [96] Shim W J, Song Y K, Hong S H, et al. Identification and quantification of microplastics using Nile Red staining[J]. Marine Pollution Bulletin, 2016, 113 (1/2): 469–476.
- [97] Hurley R R, Lusher A L, Olsen M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices[J]. Environmental Science & Technology, 2018, 52 (13): 7409-7417.
- [98] Tagg A S, Harrison J P, Ju-Nam Y, et al. Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater[J]. Chemical Communications, 2017, 53(2): 372-375.
- [99] Frei S, Piehl S, Gilfedder B S, et al. Occurence of microplastics in the hyporheic zone of rivers[J]. Scientific Reports, 2019, 9 (1): 15256.
- [100] Prata J C, da Costa J P, Girão A V, et al. Identifying a quick and efficient method of removing organic matter without damaging microplastic samples[J]. Science of the Total Environment, 2019, 686: 131-139.
- [101] Munno K, Helm P A, Jackson D A, et al. Impacts of temperature and selected chemical digestion methods on microplastic particles[J]. Environmental Toxicology and Chemistry, 2018, 37 (1): 91-98.
- [102] Courtene-Jones W, Quinn B, Murphy F, et al. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics[J]. Analytical Methods, 2017, 9 (9): 1437–1445.
- [103] Wu M J, Yang C P, Du C, et al. Microplastics in waters and soils : Occurrence, analytical methods and ecotoxicological effects[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110910.
- Heo N W, Hong S H, Han G M, et al. Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea[J]. Ocean Science Journal, 2013, 48 (2): 225-233.
- Lenz R, Enders K, Stedmon C A, et al. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement[J]. Marine Pollution Bulletin, 2015, 100 (1): 82-91.
- [106] Zhang S L, Yang X M, Gertsen H, et al. A simple method for the extraction and identification of light density microplastics from soil[J]. Science of the Total Environment, 2018, 616/617: 1056-1065.
- [107] Zubris K A V, Richards B K. Synthetic fibers as an indicator of land application of sludge[J]. Environmental Pollution, 2005, 138 (2): 201-211.

- [108] von Moos N, Burkhardt-Holm P, Köhler A. Uptake and effects of microplastics on cells and tissue of the blue mussel *Mytilus edulis* L. after an experimental exposure[J]. Environmental Science & Technology, 2012, 46 (20): 11327—11335.
- [109] von Sperber C, Lewandowski H, Tamburini F, et al. Kinetics of enzyme-catalysed oxygen isotope exchange between phosphate and water revealed by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2017, 48 (3): 368-373.
- [110] Käppler A, Fischer D, Oberbeckmann S, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?[J]. Analytical and Bioanalytical Chemistry, 2016, 408 (29): 8377–8391.
- [111] Ribeiro-Claro P , Nolasco M M , Araújo C. Characterization of microplastics by Raman spectroscopy[M]// Characterization and analysis of microplastics. Amsterdam: Elsevier, 2017: 119–151.
- [112] Löder M G J, Imhof H K, Ladehoff M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51 (24): 14283—14292.
- [113] Paul A, Wander L, Becker R, et al. High-throughput NIR spectroscopic(NIRS)detection of microplastics in soil[J]. Environmental Science and Pollution Research, 2019, 26 (8): 7364-7374.
- [114] Corradini F, Bartholomeus H, Huerta Lwanga E, et al. Predicting soil microplastic concentration using vis-NIR spectroscopy[J]. Science of the Total Environment, 2019, 650: 922-932.
- [115] Renner G, Schmidt T C, Schram J. Characterization and quantification of microplastics by infrared spectroscopy[J]. Comprehensive Analytical Chemistry, 2017, 75: 67—118.
- [116] Dazzi A, Prater C B, Hu Q C, et al. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for Nanoscale Chemical characterization[J]. Applied Spectroscopy, 2012, 66 (12): 1365–1384.
- [117] Shan J J, Zhao J B, Liu L F, et al. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics[J]. Environmental Pollution, 2018, 238: 121-129.
- [118] Primpke S, Godejohann M, Gerdts G. Rapid identification and quantification of microplastics in the environment by

quantum cascade laser-based hyperspectral infrared chemical imaging[J]. Environmental Science & Technology, 2020, 54 (24): 15893—15903.

- [119] Hendrickson E, Minor E C, Schreiner K. Microplastic abundance and composition in western lake superior as determined via microscopy, pyr-GC/MS, and FTIR[J]. Environmental Science & Technology, 2018, 52 (4): 1787–1796.
- Li J Y, Liu H H, Paul Chen J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137: 362-374.
- [121] Käppler A, Fischer M, Scholz-Böttcher B M, et al. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments[J]. Analytical and Bioanalytical Chemistry, 2018, 410 (21): 5313-5327.
- [122] Dümichen E, Eisentraut P, Bannick C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method[J]. Chemosphere, 2017, 174: 572-584.
- [123] Kusch P. Application of pyrolysis-gas chromatography/ mass spectrometry (py-GC/MS) [M]//Characterization and analysis of microplastics. Amsterdam: Elsevier, 2017: 169-207.
- [124] David J, Weissmannová H D, Steinmetz Z, et al. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly (ethylene), poly (styrene), poly (vinyl chloride) and poly (ethylene terephthalate) microplastics in a model soil[J]. Chemosphere, 2019, 225: 810-819.
- [125] Majewsky M, Bitter H, Eiche E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) [J]. Science of the Total Environment, 2016, 568: 507-511.
- [126] David J, Steinmetz Z, Kučerík J, et al. Quantitative analysis of poly (ethylene terephthalate) microplastics in soil via thermogravimetry-mass spectrometry[J]. Analytical Chemistry, 2018, 90 (15): 8793-8799.
- [127] Peñalver R, Arroyo-Manzanares N, López-García I, et al. An overview of microplastics characterization by thermal analysis[J]. Chemosphere, 2020, 242: 125170.

(责任编辑:卢 萍)